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Concentration profiles, interface thickness, and interface tensions have been calculated for
mixtures applying the gradient theory to the Peng-Robinson equation of state. The approach is
based on an accurate local fit of vapor-liquid equilibrium (VLE) data, and, for this purpose, the
flexibility of the original Wong-Sandler mixing rule has been taken into account. Correlation
and prediction capabilities of experimental interfacial tension data are analyzed for the qua-
dratic mixing rule and the present approach. The method, which is discussed in detail in this
work, provides an improved scheme for calculating interfacial properties, both for polar and
nonpolar mixtures. According to results, a better correlation and prediction of the interfacial
tensions can be obtained from an adequate interpolation of the VLE, using simple cubic equa-
tions of state. Examples are presented for binary and ternary mixtures.

1. Introduction

The interfacial tension (�) between phases is an impor-
tant physical property because many physical and chemical
processes take place at the interface of solids, liquids, and
vapors. Typical cases in which the interfacial behavior plays
a central role are the adhesion of surfaces, stability of
foams, generation of drops and bubbles, wetting, coating,
recovery of oil from wells, and phase behavior in porous
media.[1] These processes differ considerably from those
observed in the corresponding bulk phase and depend dras-
tically on the magnitude of �.

Due to its technological importance, a theoretical ap-
proach that is able to correlate or predict � as a function of
temperature, pressure, and concentration is valuable from a
practical viewpoint. One of the most successful approaches
is the gradient theory (GT), originally developed by van der
Waals, and reformulated later by Cahn and Hilliard.[2]

Briefly, the GT describes a continuous evolution of the
density of the Helmholtz energy along the interface, from
which the interfacial concentration profile and � can be
calculated. Since then, many works have been devoted to
improve the results of the GT by modeling the Helmholtz
energy with different equations of state (EOS). A significant
advantage of such an approach is that a common EOS
model can be used to calculate � and the phase equilibrium
condition that promotes the coexistence of phases.

As follows from the recent review of Kahl and Enders,[3]

major work regarding the prediction of � has been based on

standard cubic EOSs with using a quadratic mixing rule
(QMR). Such a combination yields adequate predictions for
simple mixtures, like the type I systems in the classification
of van Konynenburg and Scott.[4] For example, Carey and
colleagues[5,6] and Cornelisse and colleagues[7-9] have pre-
dicted � for hydrocarbon mixtures using the Peng-Robinson
EOS (PR-EOS).[10] Carey and colleagues,[5,6] Cornelisse
and colleagues,[7-9] Sahimi and Taylor,[11] and Miqueu
et al.[12] have demonstrated that GT with PR-EOS and QMR
also brings excellent results in calculating � in binary and
ternary mixtures of carbon dioxide with hydrocarbons.
However, for the case of standard cubic EOSs, the predic-
tion of the interfacial behavior for polar mixtures may be
inaccurate or, even, nonphysical.[7] These limitations follow
from the fact that the QMR has a limited capability for
interpolating the vapor-liquid equilibrium (VLE) of polar
systems.[13]

The limitation of the GT in predicting � of polar mix-
tures may be overcome by using different approaches. One
possibility is to consider an EOS that is able to treat com-
plex mixtures. For example, good results have been reported
for the APACT model (Associated Perturbed Anisotropic
Chain) by Cornelisse and colleagues[6,14] and for the SAFT
model (Statistical Associating Fluid Theory) by Kahl and
Enders.[15] An alternative approach is to consider a cubic
EOS of the van der Waals type with improved mixing rules.
The latter approach is well established for treating VLE
problems in engineering practice,[13] although its capability
for predicting � has not yet been analyzed.

In this work, we explore the prediction capability of the
GT applied to the PR-EOS, appropriately modified for fit-
ting vapor pressures of pure components, together with the
mixing rule proposed by the Wong and Sandler (WS).[16]

Our approach is exemplified with binary mixtures of alco-
hols plus water in the low-pressure range, and with a ternary
mixture of carbon dioxide plus hydrocarbons in the high-
pressure range.
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2. Theory

2.1 Gradient Theory

According to the GT, the interfacial fluid between bulk
phases in equilibrium obeys the condition of minimum en-
ergy. For a planar vapor-liquid interface, this condition is
given by a set of partial differential equations that describes
the dependence of the concentration of each component

along the interface length z.[5-9,11,12] Expressed in terms of
concentrations, the fundamental equation of the GT is:
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nc
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d�s
��d�j

d�s
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k = 1, 2, . . . , s − 1, s + 1, . . . , nc

where nc stands for the number of components, cij is the
cross-influence parameter (� cji), �i is the concentration of
component i (related to the concentration of the mixture �
by �i � xi �), and P0 is the bulk equilbrium pressure. Hk is
the kth component of the vector function H given by:

H(�) � |C|C−1�T
�(� + P0) (Eq 2)

|C| is the determinant of the influence parameter matrix C
defined as:

C = �
c11 · · · c1nc
···

· · ·
···
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� (Eq 3)

and �� is the following vector operator
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(Eq 4)

Finally, in Eq 1 and 2, � correspondes to the grand ther-
modynamic potential defined as:

���i�z�,��z�� = a0��i�z�,��z�� − �
i=1
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�i�z��i
0�T 0,V 0,�i

0� (Eq 5)

In Eq 5, a0 is the density of the Helmholtz energy of the
homogeneous system (i.e., the bulk phase), �0

i is the chemi-
cal potential of component i at equilibrium and, V0, T 0, �0

i
are the equilibrium volume, temperature, and concentration
of component i, respectively. a0 and �0

i can be directly
determined from an EOS using the following expres-
sions[17,18]:
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(Eq 6b)

Nomenclature

a cohesion parameter in the PR-EOS
a0 Helmholtz energy density of the homogeneous

system
b covolume parameter in the PR-EOS
cii influence parameter of pure component i
cij cross influence parameter
C matrix of the influence parameters
gnx n-esima derivative of Gibbs energy with respect

to x (see Eq. 14)
G Gibbs energy
H auxiliary vector
Hk kth component of the auxiliary vector H
k interaction parameter for the mixing rule
m parameter of the thermal cohesive function of

PR-EOS (Soave’s factor)
nc number of components
P absolute pressure
R universal gas constant
SP stationary point
T absolute temperature
V volume
x, y mole fractions of the liquid and vapor phases
z normal distance to the interface

Greek

�i thermal cohesive function of the species i
� NRTL parameter
	 adjustable parameter
� grand thermodynamic potential
� interfacial tension
� chemical potential
� molar concentration
�s molar concentration used as integration variable

 NRTL parameter
� Wilson parameter

Subscripts

c critical
exp experimental
i, j, l, k species
s independent variable

Superscripts

L liquid
V vapor
0 equilibrium
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In Eq 6, R is the gas constant, T is temperature, and P is
pressure. According to the GT, � can be calculated by solv-
ing[5-9,11,12]:

� = �
�s

V

�s
L�2�� + P0� �

i,j=1

nc

cij�d�i

d�s
��d�j

d�s
��1�2

d�s (Eq 7)

The integration of Eq 7 requires the solution of Eq 1, which
provides the topology of the concentration profiles �i along
the interface, from bulk to bulk phase. Inspection of Eq 1 to
7 reveals that the calculation of � depends on cij, the EOS
model and its mixing rules.

In this work, cij is calculated using the procedure sug-
gested by Carey and colleagues[5,6] and Cornelisse and
colleagues.[7-9] For the case of pure fluids (i � j), cii is
calculated at a constant temperature from experimental �
values (�exp) as:

cii�T
0� = �exp

2 �T 0���
�0,V

�0,L

�2�� + P0�d�i� −2

(Eq 8)

and its temperature dependence is correlated by a linear
function. For the case of mixtures (i � j), cij is obtained by
averaging the pure component influence parameters accord-
ing to:

cij = �1 − 	ij��ciicjj 	ij = �0 if i = j

	ji if i � j
(Eq 9)

where 	ij is a symmetric adjustable parameter that, in turn,
may be obtained from the fit of experimental � data of
mixtures. Due to stability requirements 	ij should be
bounded to the range 0 � 	ij < 1.[5,7,19,20] When 	ij is zero,
the set of differential equations indicated in Eq 1 becomes
the following set of algebraic equations[5,7,11,12]:

�css��k��� − �k
0� = �ckk��s��� − �s

0�

k = 1, 2, . . . , s − 1, s + 1, . . . , nc (Eq 10)

As we stated before, besides cij, the calculation of �
depends on the EOS model and its mixing rules through the
chemical potential. In this work, the chemical potential of
phases and interfaces has been represented by the PR-EOS.
In addition, the QMR and the original WS mixing rules have
been considered for correlating experimental VLE data and
to predict (	ij � 0) or to correlate (	ij � 0) � in mixtures.
Due to several modifications that have been proposed for
the PR-EOS and the mixing rules used in this work in the
Appendix, we summarized, briefly, the main expressions
used for the homogeneous fluids (e.g., PR-EOS, as well as
the QMR and the original WS mixing rules).

2.2 Gradient Theory Projections

As in the molecular-dynamics approach,[22,23] the GT
yields a rich description of properties along the interface.

These results may be collected in the following set of pro-
jections, which are useful to analyze the interface behavior
and its relation to some VLE features:

2.2.1 �i−�j Projection. This projection is generated by
solving Eq 1 or Eq 10. From this diagram, it is possible to
quantify the population of species at the interface and the
surface activity of a mixture (or molar accumulation of the
species at the interfaces). The surface activity is character-
ized by the condition (d�i/d�j) � 0, which states the exis-
tence of stationary points (SPs) of concentration along the
interface.

2.2.2 z−�i Projection. This projection is useful in de-
scribing the concentration of species along the interface
length and may be directly compared to molecular-
dynamics predictions.[24,25] The z−�i diagram may be ob-
tained from the �j−�i projection using the following rela-
tions:
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s − 1, s + 1, . . . , nc
(Eq 11b)

where

� = � + P0 (Eq 12)

From Eq 11, it is possible to conclude that the SPs are
also reflected in the z−�i projection as points at which
(d�i/dz) � 0.

2.2.3 �i−�� Projection. This projection is related to
the �j−�i projection by Eq 5 and 12. In this case, SPs are
reflected by the condition (��/��i) � �. It is interesting
to observe that this projection also involves equilibrium
information, as follows from the relations:

���

��i
�

T0,V0,�j�i
0

= �i − �i
0 = 0 (Eq13a)

��2�

��i
2 �

T0,V0,�j�i
0

= ���i

��i
�

T0,V0,�j�i
0

> 0 (Eq 13b)

Equation 13a is equivalent to the necessary VLE condition
at constant temperature. In addition, Eq 13b is a differential
stability condition for interfaces that are comparable to the
Gibbs energy (G) stability constraint of a single phase.[26]

According to our results, we have observed that the sign
constraint of Eq 13b is satisfied in the following two cases:

• The phases involved in an equilibrium state are globally
stable; and

• Metastable phase equilibrium states characterized by
the condition:
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��n G�RT

�xi
n �

T,P

= gnx � 0 �n = 2,3� (Eq 14)

Consequently, the inspection of the minima in � − � es-
tablishes whether the VLE is stable (absolute minima of
�) or metastable (relative minima of �).[22,27]

2.2.4 x−� and P−� Projections. The x−� diagram is
obtained directly from Eq 7, while the P−� diagram is ob-
tained by combining the x−� and x−P projections (the latter
obtained from VLE calculations). The relation between the
x−P and P−� projections follows from the identity:

��P

�x�T
= ��P

���T
���

�x�T
(Eq 15)

which allows establishing that an azeotropic point in the
x−P diagram ([�P/�x]T � 0), is reflected by the singularity
[��/�P]T � � in the P−� projection.

3. Procedure for Calculations

The following sequential steps are suggested for calcu-
lating �.

• Calculate the VLE and characterize the stability of the
predicted phases;

• Fit cii, as described in Eq 8 and fix the value of 	ij
within the range 0 � 	ij < 1;

• Select the variable of integration �s in Eq 1, provided
that �s must exhibit a monotonic behavior along the
interface region;

• Discretisize �s between the concentration of bulk
phases;

• Solve Eq 1 for the concentration of the other compo-
nents �1, . . . , �s−1, �s+1, . . . �nc for each �s. Initial �i
values may be taken from the solution of Eq 10;

• Calculate � from Eq 7; and
• Test other 	ij values to minimize � deviations.

4. Results

To test the approach described in this work, we have
selected a set of binary mixtures of water plus alcohol at
303.15 K in the low-pressure range and a ternary system
(carbon dioxide with hydrocarbons) at 344.30 K in the high-
pressure range. Table 1 summarizes the physical properties
of the pure components. Table 2 presents the mixing rule
parameters, and Table 3 contains the temperature, pressure,
and concentration ranges of the experimental data that were
used to fit the mixing rule parameters shown in Table 2.
Finally, Table 4 summarizes deviation statistics for VLE
predictions.

As established in section 2, a properly parametrized EOS
together with cii values provide the information required to
characterize interfacial behavior. The absolute average de-
viation overall deviations for � (AAD�%), as obtained for
the mixtures discussed in this work, are presented in Table

4. For these calculations, the optimal 	ij values were 0 for
methanol plus water and for the ternary system carbon di-
oxide plus butane plus decane, 0.1 for ethanol plus water,
and 0.15 for propan-1-ol plus water, and propan-2-ol plus
water.

According to the results in the Table 4, we can conclude
that better VLE correlations are reflected by improved �
predictions (	ij � 0) or � correlations (	ij � 0). This result
is useful for establishing, which mixing rule may be used to
calculate VLE and � simultaneously. From the quoted
table, we also observe that the combination GT with
PR-EOS and original WS mixing rule permits the calcula-
tion of interfacial behavior in mixtures of propanol plus
water in which QMR is unable to describe the interfacial
behavior due to this mixing rule predicting false immisci-
bility gaps for these mixtures. Specific details involved in
the prediction of � for each mixture are described below.

4.1 Binary Systems

Concentration profiles (�i−�j) are the basic piece of in-
formation needed to calculate � according to Eq 7. These
profiles are shown in Fig. 1 for the methanol plus water
mixture at different mole fractions. �1 and �2 were calcu-
lated from the original WS mixing rule coupled to Wilson’s
model (see details in Table 4). From Fig. 1, it is possible to
observe that the system exhibits surface activity for the
whole mole fraction range (a single SP, A, appears for wa-
ter). Figure 2, in turn, depicts the z−�i projection. In this
case, the SPs that appear in Fig. 1 (point A) are reflected in
Fig. 2 (point B), as can be expected from the discussion in
Section 2.2. It is interesting to note that, as a direct conse-
quence of the SPs, the concentration inside the interface
could be locally larger than the concentration in bulk

Table I Physical properties of the pure components

Fluid Tc, K
Pc,

MPa mi T, K
1020 ×

cii/J m5 mol−2

Butane(a)(b) 425.20 3.80 0.6716 344.30 20.3850(i)
Carbon dioxide(a)(c) 304.20 7.38 0.6942 344.30 3.1483(i)

Decane(b)(c) 617.60 2.11 1.0579 344.30 134.0870(i)
Ethanol(d)(h) 516.20 6.38 1.2541 303.15 4.1281
Methanol(e)(h) 512.60 8.10 1.1376 303.15 2.4130
Propan-1-ol(f)(h) 536.70 5.17 1.2780 303.15 8.2608
Propan-2-ol(g)(h) 508.30 4.76 1.3246 303.15 8.9390
Water(d)-(h) 647.30 22.05 0.8438 303.15 1.4061

Note: Critical properties were taken from Reid et al.[30] mi, parameter of the
thermal cohesive function of PR-EOS (Soave’s factor),[10] which was fitted
from experimental vapor pressure data. Experimental vapor pressure data
taken from: (a) Hsu et al.[31]; (b) Raemer and Sage[32]; (c) Nagarajan and
Robinson[33]; (d) Pemberton and Mash[34]; (e) McGlashan and William-
son[35]; (f) Udovenko and Mazanko[36]; (g) Udovenko and Mazanko.[37] cii

was fitted from the experimental interfacial tension data and evaluated at T.
These experimental data were taken from (a) Hsu et al.[31]; (c) Nagarajan
and Robinson[33] and (h) Vázquez et al.[38] (i) The cii values are in good
agreement to those reported by Cornelisse,[7] Cornelisse et al.,[8,9] Sahimi
and Taylor,[11] Miqueu et al.,[12] Mejı́a et al.,[28] and Miqueu.[29]
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phases. The former result agrees well with the discussion of
Winkelmann,[23] for mixtures of hydrocarbons, and with the
previous results of Cornelisse and colleagues.[7-9]

Finally, Fig. 3 shows the �−� profile for the methanol-
plus-water mixture. This profile displays two minima
(points C and D) at equilibrium conditions. This behavior
confirms that two phases, liquid and vapor, are present at
the temperature for which the VLE has been calculated.

It should be pointed out that the �i−�j, �−�, and z−�i

projections are similar for all the binary mixtures considered
in this work.

Figures 4 and 5 depict the dependence of � on P and on
x1. Focusing our attention on these figures, it is possible to
conclude that for zeotropic systems (Fig. 4), � vapor pres-
sure exhibits a negative slope, which indicates that � de-
creases as the vapor pressure (or the concentration) in-
creases. For the case of azeotropic systems (i.e., ethanol,
propan-1-ol, and propan-2-ol plus water), � decreases as P

Table 2 Binary parameters for mixing rules

System

QMR WS + Wilson WS + NRTL

kij kij �ij �ij kij �ij �ij �ji

Butane + decane(a) 3.9916 × 10−3 3.2464 × 10−1 1.1090 0.7501 3.3820 × 10−1 0.1219 2.3293 −1.7661
Carbon dioxide + butane(b) 1.2463 × 10−1(h) 4.1206 × 10−1 1.0715 0.1995 4.0728 × 10−1 0.4523 7.1935 0.4789
Carbon dioxide + decane(c) 9.5821 × 10−2(h) 7.2592 × 10−1 0.8759 0.0360 6.9503 × 10−1 0.3866 5.5833 0.4172
Ethanol + water(d) −1.0846 × 10−1 2.3257 × 10−1 0.3666 0.5944 2.3344 × 10−1 0.4000 0.4376 1.0243
Methanol + water(e) −8.9457 × 10−2 8.1962 × 10−2 0.4103 1.1595 8.3777 × 10−2 0.4500 −0.1785 0.9075
Propan-1-ol + water(f) −1.2605 × 10−1 3.9572 × 10−1 0.1238 0.3524 3.9039 × 10−1 0.4000 0.8715 1.9725
Propan-2-ol + water(g) −1.7771 × 10−1 3.4723 × 10−1 0.2013 0.4330 3.4655 × 10−1 0.4000 0.6280 1.6335

Note: The parameters for the mixing rules were fitted from experimental VLE data taken from the following: (a) Raemer and Sage[32]; (b) Hsu et al.[31]; (c)
Nagarajan and Robinson[33]; (d) Pemberton and Mash[34]; (e) McGlashan and Williamson[35]; (f) Udovenko and Mazanko[36]; (g) Udovenko and Mazanko.[37]

(h) The kij values are in good agreement to those reported by Cornelisse,[7] Cornelisse et al.,[8,9] Sahimi and Taylor,[11] Miqueut et al.,[12] Mejı́a et al.,[28]

and Miqueu.[29]

Table 3 Range of temperature, pressure, and concentration of the experimental data used to fit mixing
rule parameters

System
Temperature

range, K
Pressure range,

MPa
Mole fraction

range

Butane + decane(a) 310.93-510.93 5 × 10−4-4.92 0.0-1.0
Carbon dioxide + butane(b) 319.30-377.60 2.18-7.58 0.188-0.873
Carbon dioxide + decane(c) 344.30-377.60 6.38-16.48 0.457-0.925
Ethanol + water(d) 303.15-363.15 4.25 × 10-3-1.59 × 10−1 0.0-1.0
Methanol + water(e) 303.15-338.15 5.62 × 10−3-1.03 × 10−1 0.0-1.0
Propan-1-ol + water(f) 303.15-333.15 4.28 × 10−3-3.11 × 10−2 0.0-1.0
Propan-2-ol + water(g) 303.15-333.15 4.28 × 10−3-4.26 × 10−2 0.0-1.0

(a) Raemer and Sage[32]; (b) Hsu et al.[31]; (c) Nagarajan and Robinson[33]; (d) Pemberton and Mash[34]; (e) McGlashan and Williamson[35]; (f) Udovenko
and Mazanko[36]; (g) Udovenko and Mazanko.[37]

Table 4 Statistic deviations in vapor pressure and vapor phase mole fractions for vapor-liquid equilibrium
correlations and for prediction of interfacial tensions

System

QMR WS + Wilson WS + NRTL

AADP, %(a) �y1(b) AAD�, %(a) AADP, % �y1 AAD�, % AADP, % �y1 AAD�, %

Carbon dioxide + butane + decane(c) 1.5 2.0 23.1 3.3 1.0 25.4 2.4 1.0 18.5
Ethanol + water(d) 4.9 2.8 6.9 0.8 0.5 3.3 0.7 0.5 2.4
Methanol + water(d) 2.4 1.1 2.6 1.6 0.9 2.4 1.6 0.9 2.4
Propan-1-ol + water(d) 7.0 4.8 NC(e) 1.6 0.9 1.3 1.7 1.2 1.3
Propan-2-ol + water(d) 8.8 6.1 NC 1.3 1.0 2.2 0.9 1.0 1.9

Note: AAD, absolute average deviation; NC, not calculated. VLE deviations are measured with respect to the experimental VLE data referred to in Table
1. (a) AAD� � (100/NP) ∑i�1,NP |�exp

i − �cal
i |/�exp

i (� � P, or �). (b) y1 � (100/NP) × ∑i�1,NP |yexp
i − ycal

i |, where NP is the number of experimental points.
(c) � data were taken from Nagarajan et al.[39] (d) � data were taken from Vázquez et al.[38] (e) Not calculated because the mixing rule predicts false
immiscibility gaps for one of its binaries (carbon dioxide + decane; see Table 2).
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and x1 increase until the azeotropic mole fraction is reached,
where [��/�P]T � �. Then � decreases as P decreases and
x1 increases. This behavior is illustrated in Fig. 5 for the
mixture propan-2-ol plus water.

At this point, it is important for analyzing the effect of
the VLE stability on � predictions. For the case of mixtures
that contain methanol and ethanol, both the QMR and the
WS models predict stable VLE. However, for mixtures that

Fig. 1 �1−�2 projections at different mole fractions for methanol
(1) + water (2) at 303.15 K. (—) GT + PR-EOS + WS + Wilson
model results; (�) VLE bulk densities from PR-EOS + WS +
Wilson model; (�) stationary points for water (SP2)

Fig. 2 z−�i projections at different mole fractions for methanol
(1) + water (2) at 303.15 K, calculated with GT + PR-EOS + WS
+ Wilson model. (—) z−�1; (� � �) z−�2; (�) VLE bulk densities
from PR-EOS + WS + Wilson model, (�) stationary points for
methanol (SP1)

Fig. 3 �−� at different mole fractions for methanol (1) + water
(2) at 303.15 K. (—) Calculated from GT + PR-EOS + WS +
Wilson model; (�) VLE bulk densities from PR-EOS + WS +
Wilson model

Fig. 4 P−� and x1−� projections for methanol (1) + water (2) at
303.15 K. (� � �) GT + PR-EOS + QMR results; (—) GT + PR-EOS
+ WS + Wilson results; (�) experimental � data[38]
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contain propanol, the QMR predicts a false immiscibility
gap.

Following the theory described in section 2, the concen-
tration range in which the homogeneous liquid phase be-
comes unstable produces a discontinuity in � (a nonphysical
behavior, because interfaces are present in the whole con-
centration range). To visualize such a behavior, Fig. 6
depicts the x1−� projection for the mixture propan-2-ol
plus water. In Fig. 6, we also included the boundaries of
intrinsic and global instability, as predicted by the EOS
model. In general, � can always be calculated within the
range of global stability, although never in the ranges
where g2x < 0 (range of intrinsic stability). In addition, the
metastable range of a mixture does not always allow
the calculation of �. We have observed that the possibility
of calculation inside metastable ranges depends on the
sign of the local curvature of the vapor-pressure curve
(P2x � �2P/�x2

1).
Let us fix our attention on predictions with QMR. From

the results in Fig. 6, it is possible to observe that � can be
calculated from points C to D, where the mixing rule pre-
dicts that P2x > 0. The range C to D corresponds to a
metastable condition for the homogeneous liquid phase.
However, for the case of the second liquid phase (rich in
water), calculations can be performed only from x1 � 0 to
the binodal point A. No calculation inside the metastable
range of the mixture (A to B) was numerically possible, and
it was observed that P2x < 0. For the mixture propan-1-ol
plus water, the x1−� projection is similar to that in Fig. 6.

It should be pointed out that for the case of the binaries
propan-2-ol and propan-1-ol plus water, no calculation of a

continuous x1−� curve has been possible with cubic EOSs.
In addition, it has been argued that the cubic EOS model
with QMR is not capable of predicting � of some polar
mixtures, unless a nonzero 	ij is used for averaging cij ac-
cording to Eq 9.[7] Our results demonstrate that such a claim
is misleading because the VLE model fails to predict the
stability of the system and, consequently, the number of true
phases that coexist at the equilibrium condition.

4.2 Ternary System Carbon Dioxide Plus Butane Plus
Decane

In this case, we test the predictive ability of our approach
for predicting � in multicomponent mixtures. For this task,
we consider binary contributions both for calculating cij and
for predicting VLE. Our results for the binaries that con-
tribute to the ternary mixture are in very good agreement
with those of previous reports by other authors.[7-9,11,12,28,29]

In addition, we note that no parameter in our approach has
been fitted from ternary data. Figures 7 and 8 compare �
predictions with experimental values. From Fig. 7 and 8,
and from Table 4 we can observe that both the QMR and
original WS mixing-rules lead to better VLE predictions
and result in smaller � deviations. However, it is possible to
note that both mixing-rule models underestimate the experi-
mental data in the whole mole fraction range. This fact may
be attributed to the inability of the GT and the PR-EOS
appropriately describe the scaling behavior at the critical
point. These results for � are in agreement with the predic-
tions recently reported by Miqueu et al.[12] and Miqueu[29]

as can be seen in Fig. 8.

Fig. 5 P−� and x1−� projections for propan-2-ol (1) + water (2)
mixture at 303.15 K. (� � �) GT + PR-EOS + QMR results; (—) GT
+ PR-EOS + WS + NRTL results; (�) azeotropic point (AzP); (�)
experimental � data[38]

Fig. 6 x1−� projection for propan-2-ol (1) + water (2) at 303.15 K.
(� � �) GT + PR-EOS + QMR results; (—) GT + PR-EOS + WS
+ NRTL results; (- - -) instability limits; (�) experimental �
data[38]

Basic and Applied Research: Section I

Journal of Phase Equilibria and Diffusion Vol. 26 No. 3 2005 221



5. Concluding Remarks

In this work, we have developed an approach based on
the application of the GT to a simple EOS with original WS
mixing rules. Compared with traditional mixing rules, the
main advantage of the original WS model is its flexibility
for interpolating VLE and, then, for calculating interfacial

properties under accurately predicted VLE conditions. The
approach in question is useful both for correlating and for
predicting interfacial tension of mixtures, and generates re-
sults that show very good agreement with the calculations of
other authors.[7-9,11,12,28,29] According to our results, an ad-
equate and accurate interpolation of VLE data allows:

• Experimental fit of � data over the whole mole fraction
range of binary mixtures;

• Reasonable prediction of the � trend, if experimental
data are not available, by assuming 	ij � 0; and

• A fair prediction of the � is warranted

In addition, we demonstrated that the � behavior is gov-
erned by the VLE, and, consequently, the analysis of the
interface behavior by means of GT is constrained to mixing
rules that predict an accurate and stable VLE.

Finally, from the previous results, we note that the ap-
proach of GT plus EOSs with an appropriate mixing rule
produces very good predictions for mixtures of carbon di-
oxide plus hydrocarbons. However, for mixtures of alcohols
plus water, the quoted approach needs experimental data on
� in order to obtain an adequate correlation of �s.
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Appendix: Expressions for Homogeneous Fluids

In this work, we consider the PR-EOS and two mixing
rule models (QMR and original WS) to describe the homo-
geneous fluid. The PR-EOS is given by10:

P = −
RT�

1 − �b
−

a�2

1 − 2�b + �2b2 (Eq A1)

where R is the gas constant, T is temperature, P is pressure,
� is the molar density, a is the cohesion parameter, and b is
the covolume that, for the case of pure fluids, are defined as:

ai = 0.457235
�RTc,i�

2

Pc,i
��T,Tc,i� (Eq A2)

bi = 0.077796
RTc,i

Pc,i
(Eq A3)

In Eq A2 and A3, Tc,i, Pc,i are the critical temperature and
pressure of pure fluids, respectively, and �i is the thermal
cohesion function:

�i = �1 + mi�1 − �T�Tc,i��
2 (Eq A4)

Fig. 7 x1−x2−� projection for carbon dioxide (1) + butane (2) +
decane (3) at 344.30 K. (� � �) GT + PR-EOS + QMR results; (—)
GT + PR-EOS + WS + NRTL results; (�) experimental � data[39]

Fig. 8 P−� projection for carbon dioxide (1) + butane (2) +
decane (3) at 344.30 K. (� � �) GT + PR-EOS + QMR results; (—)
GT + PR-EOS + WS + NRTL results; (- �� -) Miqueu et al.[12]

results; (�) experimental � data[39]
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where mi, the Soave’s factor, is a parameter that can be
generalized in terms of the acentric factor or, as in the case
of this work, may be directly fitted from vapor pressure data
of pure components (see Wisniak et al.[17] for details).
Equations A2 and A3 are extended to mixtures using mixing
rules. When considering QMR, the cohesion parameter and
the covolume of the mixture are given by the following
expressions[13]:

a =
1

�2 �
i,j=1

nc

�i�j�aiaj �1 − kij� (Eq A5)

b =
1

� �
i=1

nc

�ibi (Eq A6)

where kij is the interaction parameter, �i is the concentration
of component i, � is the concentration of the mixture. � and
�i are related by the mole fraction xi according to �i � xi �.
For the case of the original WS mixing rule, the parameters
a and b are calculated as follows[16]:

a =

RT��
i,j=1

nc �i�j

�2 ��bii −
aii

RT� + �bjj −
ajj

RT���1 − kij�

2 �
��

i,j=1

nc �i

�

ai

RTbi
+

GE

RT

�2

ln��2 − 1�
�

�1 − �
i,j=1

nc �i

�

ai

RTbi
+

GE

RT

�2

ln��2 − 1�
�

(Eq A7)

b =
�
i,j=1

nc �i�j

�2
��bii −

aii

RT� + �bjj −
ajj

RT�� �1 − kij�

2

�1 − �
i,j=1

nc �i

�

ai

RTbi
+

GE

RT

�2

ln��2 − 1�
� (Eq A8)

where GE is the excess Gibbs energy, which parametrized
from an activity coefficient model. In this work, we have
considered the GE-NRTL and GE-Wilson equations.[21]
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